google-site-verification=0YPwqXNDF0hcJNiKJQNBtjPhBC0lBsFFxK0-5WFXJsE google-site-verification=0YPwqXNDF0hcJNiKJQNBtjPhBC0lBsFFxK0-5WFXJsE
top of page
Search
Writer's pictureKamran Kowsari

Text Classification Algorithms: A Survey

Updated: Feb 12, 2021




Referenced paper: Kowsari, K., Meimandi, K. J., Heidarysafa, M., Mendu, S., Barnes, L. E., & Brown, D. E. (2019). “Text Classification Algorithms: A Survey,”. doi:10.3390/info10040150. ArXiv : Text Classification Algorithms: A Survey GitHub: kk7nc/Text_Classification In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in real-world problems are discussed.












130 views0 comments

Recent Posts

See All

Comments


bottom of page